Math 221: LINEAR ALGEBRA

Chapter 1. Systems of Linear Equations §1-5. Application to Electrical Networks

Le Chen ${ }^{1}$
Emory University, 2021 Spring

(last updated on $01 / 25 / 2021$)

Electrical Networks

Resistor Networks

Important Symbols:

Resitance is measured in ohms, Ω. Voltage is measured in volts, V. Current is measured in amps, A.

Problem

Write an equation for each circuit and solve for each current in the following diagram.

Solution
The equation for the bottom circuit, with current I_{1} is given by

$$
5 \mathrm{I}_{1}+3 \mathrm{I}_{1}+\mathrm{I}_{1}-\mathrm{I}_{2}=-24
$$

The top left circuit, with current I_{2} is

$$
\mathrm{I}_{2}-\mathrm{I}_{1}+4 \mathrm{I}_{2}-4 \mathrm{I}_{3}+2 \mathrm{I}_{2}=17
$$

The top right circuit is

$$
4 \mathrm{I}_{3}-4 \mathrm{I}_{2}+2 \mathrm{I}_{3}+2 \mathrm{I}_{3}=-14
$$

After simplifying, this system is represented by

$$
\left[\begin{array}{rrr|r}
9 & -1 & 0 & -24 \\
-1 & 7 & -4 & 17 \\
0 & -4 & 8 & -14
\end{array}\right]
$$

Solution (continued)
The reduced row-echelon form of this matrix is

$$
\left[\begin{array}{lll|r}
1 & 0 & 0 & -\frac{5}{2} \\
0 & 1 & 0 & \frac{3}{2} \\
0 & 0 & 1 & -1
\end{array}\right]
$$

This gives values of the currents of

$$
\begin{aligned}
& \mathrm{I}_{1}=-\frac{5}{2} \\
& \mathrm{I}_{2}=\frac{3}{2} \\
& \mathrm{I}_{3}=-1
\end{aligned}
$$

